
                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 7, July 2015 
 

Copyright to IJARCCE                                          DOI 10.17148/IJARCCE.2015.4762                                                         268 

 

Real Time System Scheduling Algorithms & 

Fault Tolerance 
 

Charu Rani
1
, Mrs. Manju Godara

2 

Student, Cse, Jan nayak Choudhary Devi lal Memorial College of Engineering, Sirsa, India1 

Lecturer-cum-Guide, Cse, Jan nayak Choudhary Devi lal Memorial College of Engineering, Sirsa, India2 

 

Abstract: The main objective of this paper is to implement the real time scheduling algorithms and to minimize the 

average waiting time so that given set of  tasks may be completed in a minimal time with an efficient output. We will 

also discuss the advantages and disadvantages of the same. Task within the real time system are designed to accomplish 

certain service(s) upon execution, and thus, each task has a particular significance to overall functionality of the system. 

Scheduling algorithms in non real time system not considering any type of dead line but in real time system deadline is 

main criteria for scheduling the task. 
 

Keywords: CPU Scheduling, FCFS, Non Preemptive, Preemptive, Round Robin, Round Robin with SRTF, SJF. 

 
I. INTRODUCTION 

A. Real time system 

The Oxford Dictionary of Computing defines a 

real-time system as: 

Any system in which the time at which output is produced 

is significant. This is usually because the input 

corresponds to some movement in the physical world, and 

the output has to relate to that same movement. The lag 

from input time to output time must be sufficiently small 

for acceptable timeliness.  

The correct behavior of a real-time system depends as 

much on the timing of computations as it does on the 

results produced by those computations. Results delivered 

too late may be useless, or even harmful.  

According to Silberchatz, Galvin and Gagne[1]; The aim 

of operating system to allow a number of processes 

concurrently in order to maximize the CPU utilization. 

The most important attribute of a task in a real-time 

system is its timing constraints. Such timing constraints 

must be expressed precisely. A deadline is the most widely 

used form of a timing constraint. It offers a dual view of 

the usefulness of a task’s completion with respect to a 

single point in time. The completion of a task is of no 

value beyond the deadline(timing constraints). Improper 

use of CPU can reduce the efficiency of the system in 

multiprogramming computing systems. In 

multiprogramming systems, multiple processes are being 

kept in memory for maximum utilization of CPU [2]. CPU 

utilization can be maximized by switching CPU among 

waiting processes in the memory and running some 

process all the time [1] and Waiting time is the amount of 

time of a process has been waiting in the ready queue [9]. 

The main aim of the CPU scheduling algorithms is to 

minimize waiting time, turnaround time, response time 

and context switching and maximizing CPU utilization. 

This study focuses on improving the effectiveness of 

Round Robin CPU scheduling algorithm. 
 

As per “Office of Aviation Research and Development 

Washington, D.C. 20591. Real-Time Scheduling Analysis. 

November 2005”[3] A real-time scheduling System is  

 

 

composed of the scheduler, clock and the processing 

hardware elements. In a real-time system, a process or task 

has schedule ability; tasks are accepted by a real-time 

system and completed as specified by the task deadline 

depending on the characteristic of the scheduling 

algorithm. 
 

1) Hard real time system: 

Hard real time tasks are periodic activities. In 

hard real time system a hard dead line is a completion time 

constraint, such that if the deadline is satisfied, i.e., the 

task’s execution point reaches the end of the deadline 

scope before the deadline time  occurs, then the time 

constrained portion of the task’s execution is timely, 

otherwise that portion is not timely. E.g. in Autopilot 

system microprocessor must control the airbags etc in case 

of out of control, nuclear plant control etc.  
 

2) Soft real time systems:  

SRT-tasks are activities that are not subject to strict 

deadlines. Usually, they are aperiodic tasks. 

A Soft deadline is a completion time constraint, 

such that if the deadline is satisfied i.e., the task execution 

point reaches the end of the deadline scope before the 

deadline time occurs then the time constrained portion of 

the task’s execution is more timely. Thus hard dead line is 

the special case of soft deadline. E.g. telephone switching 

it makes the connection before process execution, Image 

processing applications etc where utility of result 

decreases over time after deadline expires. 

There are a large variety of real time systems but 

all have common characteristics, which differentiate them 

from non-real time systems. 
 

2.1) Time Constraint: One very common form of time 

constraint is deadline associated with tasks. A task 

deadline specifies the time before which the task must 

complete and produce results. It is the responsibility of the 

RTOS, schedulers particularly, to ensure that all tasks 

meet their respective deadline. 



                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 7, July 2015 
 

Copyright to IJARCCE                                          DOI 10.17148/IJARCCE.2015.4762                                                         269 

 

2.2) Safety-Criticality: For traditional non-real time 

systems safety and reliability are independent issues. 

However, in many real time systems these two issues are 

intricately bound together making them safety-critical. 
 

II. APPLICATIONS OF REAL TIME SYSTEM 

Commercial transaction systems, transportation 

systems, and military/space systems - to name a few. The 

supporting research includes system architecture, design 

techniques, coding theory, testing, and validation, proof of 

correctness, modeling, software reliability, operating 

systems, parallel processing, and real-time processing. 

These areas often involve widely diverse core expertise 

ranging from formal logic, mathematics of stochastic 

modeling, graph theory, hardware design and software 

engineering. Redundancy has long been used in fault-

tolerant and adaptive systems. However, redundancy does 

not inherently make a system fault-tolerant and adaptive; it 

is necessary to employ fault-tolerant methods by which the 

system can tolerate hardware component failures, avoid or 

predict timing failures, and be reconfigured with little or 

graceful degradation in terms of reliability and 

functionality. Early error detection is clearly important for 

real-time systems; error is an abbreviation for erroneous 

system state, the observable result of a failure.  

The ability to deliver service is called 

dependability. The schema of dependability computing 

Means to attain dependability has been grouped by 

researchers into four major categories: 
 

A. Fault prevention/avoidance 

 Fault prevention aims at reducing the creation or 

occurrence of faults during the computing system life 

cycle. Means are used during the system design phase. 

Some of them have an impact on the created system. 

Others prevent faults occurring during its useful life. 

These means concern the system modeling tools 

(including implementation technologies), the system 

models and the processes used to obtain these models. 
 

B. Fault tolerance 

 Fault tolerance aims at guaranteeing the services 

delivered by the system despite the presence or appearance 

of faults. Fault tolerance approaches are divided into two 

classes: 

 Compensation techniques for which the structural 

redundancy of the system masks the fault presence. 

 Error detection and recovery techniques, that is, 

detection and then resumption of the execution either 

from a safe state or after the operational structure 

modification (reconfiguration). 
 

C. Fault removal  

Fault removal aims at detecting and eliminating 

existing faults. Fault removal are older that those on fault 

prevention. Fault removal techniques are often considered 

at the end of the model definition, particularly when an 

operational model of the system is complete. 

Scheduling Algorithms are used for fault tolerance as well 

as fault avoidance which may be classified as  

1) First Come First Serve 

2) Shortest Job First 

3) Preemptive 

4) Non-Preemptive 

5) Round-Robin Technique 
 

Round Robin is considered the most widely used 

scheduling algorithm in CPU scheduling [5]-[6], also used 

for flow passing scheduling through a network device [7]-

[8]. 
 

 

III. CPU SCHEDULING 

In multi-programmed operating systems CPU scheduling 

plays a fundamental role by switching the CPU among 

various processes [1]. CPU scheduling algorithms are used 

to allocate the CPU to the processes waiting in the ready 

queue. Some of the popular CPU scheduling algorithms 

are First-Come-First-Served (FCFS), Shortest Job First 

(SJF), Priority Scheduling and Round Robin (RR). FCFS 

is the simplest form of CPU scheduling algorithm. In this 

scheduling algorithm, the process that arrives first in ready 

queue served first, so the name First-Come-First-Served. 

The average waiting time in FCFS is quite long [1]. In 

Shortest Job First (SJF) algorithm, process from the ready 

queue that has shortest CPU burst time will execute first. 

If two processes are having same CPU burst time and 

arrival time, then FCFS procedure is followed. In SJF 

average waiting time decreases. Priority scheduling 

algorithm allocates the CPU to the higher priority process 

from the ready queue. In Round Robin (RR), a small unit 

of time quantum is given to each process present in the 

ready queue which maintains the fairness factor. In this 

paper we have proposed an improvement in RR to reduce 

the average waiting time. 
 

A. Scheduling Criteria 
 

1) CPU Utilization:  

This is a measure of how much busy the CPU is.  
 

2) Throughput:  

Throughput is the no. of processes completed per time 

period.  
 

3) Waiting time: 

Waiting time[9] is the sum of periods spends waiting in 

the ready queue. CPU executes only one job at a time. 

The rest of process wait for the CPU.  
 

4) Turnaround time: 

It is the total time taken to execute a job. The interval from 

the time of submission of a process to the time of 

completion is the turnaround time.  

5) Response time: 

Response time is the time from the submission of a request 

until the first response is produes.  

 
IV. ASSUMPTIONS 

 Set of tasks Ti every task has attribute arrival time, 

Deadline, Worst case execution time. 

 Priorities of the task, priorities are set according to the 

scheduling algorithm. 



                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 7, July 2015 
 

Copyright to IJARCCE                                          DOI 10.17148/IJARCCE.2015.4762                                                         270 

 

 System_clock is the clock set for the task i.e. deadline 

time to every task, system clock is set according to the 

task requirement.  

 arrival_queue is used to store the arrival task, i.e. all 

the arrival tasks are inserted into the arrival_queue . 

 ready_queue is the queue for inputting the ready task, 

i.e all the ready to execute tasks are store in ready 

queue. 

 remove method is used to take the task from queue.    

 execute method is used to process the task, i.e. 

according to the turn of the task they are get executed. 

 Compare method  function is used to compare the task 

for their deadline if deadline of the task Ti is greater 

than the task Tk then task Ti is executed otherwise Tk 

is executed using executed method if both having equal 

deadline then task with first arrival is executed. 
 

V. ALGORITHMS 
 

A. First Come First Serve (FCFS) 

Algorithm 1) FCFS:  

1. Input set of periodic tasks set S=T1, T2, T3………., Tn, 

Duration, Activation Time, Deadline in arrival_queue ; 

2. Calculate priorities of the task according to their 

deadline.// Highest priority is given to critical delay i.e. 

smaller delay higher its priority. 

3. for time 1,2,3………system_clock, system_clock do 

4. remove task from arrival_queue and put all tasks Ti in 

ready_queue; 

5. start with highest priority task  Ti according to their 

deadline;  

6. while(ready_queue is not empty) 

{ 

    remove task Ti from ready_queue; 

    execute task Ti on single CPU;  

    compare(Ti,Tk) 

     { 

 if Deadline(Ti) > Deadline(Tk)   

            execute Ti; 

else  

execute Tk on single CPU; 

if Deadline(Ti) = = Deadline(Tk)  

use first input of ready_queue; 

                    } 

              } 

end while 

end for 

7. end Algorithm 
 

In FCFS CPU scheduling algorithm, the process that 

arrives first in the ready queue is served first. The average 

waiting time in this scheduling is quite long [1]. 
 

B. Shortest Job First Algorithm(SJF) 
 

Algorithm 1) SJF:  

1. Input set of periodic tasks set S=T1, T2, T3………., Tn, 

Duration, Activation Time, Deadline ; 

2. Calculate priorities of the task according to their 

deadline.// Highest priority is given to critical delay i.e. 

smaller delay higher its priority. 

3. for time 1,2,3………system_clock, system_clock do 

4. remove task from arrival_queue and put all tasks Ti in 

ready_queue; 

5. start with highest priority task  Ti according to their 

deadline;  

while(ready_queue is not empty) 

{ 

    remove task Ti from ready_queue; 

    execute task Ti on Multiple CPUs;  

    compare(Ti,Tk) 

     { 

 if Deadline(Ti) > Deadline(Tk)   

            execute Ti on Multiple CPUs; 

else  

execute Tk on Multiple CPUs; 

if Deadline(Ti) = = Deadline(Tk)  

use  first input of ready_queue; 

 for T=1 To Ti //Loop to check for preemption 

 if newly arrival task Tk  > currently executing task Tk 

  then 

preempt(); 

   } 

}              end while 

end for 

preempt ()  

{ 

 Temp=Ti; 

 execute Tk on Multiple CPUs; 

 assign priority to newly arrival task; 

}  

8. end Algorithm 

   

C. Round robin Quantum Non-Preemptive (RRQ_NP) 

algorithm 

 Algorithm 1) RRQ_NP: 

1. Input set of periodic tasks set S=T1, T2, T3………., Tn, 

in arrival_queue Duration, Activation Time, 

Deadline,Quantum; 

2. Calculate priorities of the task according to their 

deadline.// Highest priority is given to critical delay i.e. 

smaller delay higher its priority. 

3. Set Quantum=n; 

4. for time 1,2,3………system_clock, system_clock do 

5. remove task from arrival_queue and put all tasks Ti in 

ready_queue; 

6. start with highest priority task  Ti according to their 

deadline;  

7. while(ready_queue is not empty) 

{ 

    remove task Ti from ready_queue; 

    execute task Ti on Singlee CPU;  

  if Quantum is complete 

then  

take another task Tk according to priority on single CPU; 

end if 

end while 

end for 

8. end Algorithm 



                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 7, July 2015 
 

Copyright to IJARCCE                                          DOI 10.17148/IJARCCE.2015.4762                                                         271 

 

 D. Round Robin Quantum Preemptive(RRQ_P) Algorithm  

Algorithm 1)  RRQ_P: 

1. Input set of periodic tasks set S=T1, T2, T3………., Tn, 

in arrival_queue Duration, Activation Time, 

Deadline,Quantum; 

2. Calculate priorities of the task according to their 

deadline.// Highest priority is given to critical delay i.e. 

smaller delay higher its priority. 

3. Set Quantum=n; 

4. for time 1,2,3………system_clock, system_clock do 

5. remove task from arrival_queue and put all tasks Ti in 

ready_queue; 

6. start with highest priority task  Ti according to their 

deadline;  

7. while(ready_queue is not empty) 

{ 

    remove task Ti from ready_queue; 

    execute task Ti on Multiple CPU;  

  if Quantum is complete 

then  

take another task Tk according to priority on Multiple 

CPU; 

If task with higher priority than preempt currently 

executing task   

preempt (); 

end if 

end while 

end for 

8. end Algorithm 

 

E. Improved Round Robin Quantum Preemptive (IRRQ) 

Algorithm 

Algorithm 1) IRRQ: 

1. Input set of periodic tasks set S=T1, T2, T3………., Tn, 

in arrival_queue Duration, Activation Time, 

Deadline,Quantum; 

2. Calculate priorities of the task according to their 

deadline.// Highest priority is given to critical delay i.e. 

smaller delay higher its priority. 

3. Set Quantum=n; 

4. for time 1,2,3………system_clock, system_clock do 

5. remove task from arrival_queue and put all tasks Ti in 

ready_queue; 

6. start with the first process in the ready queue and sort 

acc. To least remaining execution time, highest priority 

task  Ti according to their deadline;  

7. while(ready_queue is not empty) 

{ 

    remove task Ti from ready_queue; 

    execute task Ti on Multiple CPU;  

  if Quantum is complete 

then  

take another task Tk from ready queue; 
 

If task with lower remaining time after every quantum 

then preempt currently executing task   

preempt (); 

end if 

end while 

end for 

8. end Algorithm 
 

VI. PROBLEM FORMULATION 
In the above mentioned algorithms Round Robin 

algorithm is better. However the average waiting time of 

SRTF is lesser than Round Robin but SRTF may lead to 

starvation leaving the CPU in a deadlock position. So in 

order to reduce the average waiting time and starvation 

problem we have to developed a new algorithm. 

 

VI. PROPOSED RESEARCH WORK 

 In the recent years, a number of CPU scheduling 

mechanisms have been developed for predictable 

allocation of processor.  
 

Mixed Scheduling (A New Scheduling Policy) [4], uses 

the job mix order for non preemptive scheduling FCFS 

and SJF. According to job mix order, from a list of N 

processes, the process which needs minimum CPU time is 

executed first and then the highest from the list and so on 

till the nth process. 
 

Time quantum is continuously adjusted according to the 

burst time of the processes in Self-Adjustment Time 

Quantum in Round Robin Algorithm[10]. 
 

Robust quantum time value has been proposed in [11] 

after arranging the process in the ascending order and 

taking the average of minimum and maximum burst time 

of the processes in the ready queue. 
 

A. Proposed Improved Round Robin(IRR) Scheduling 

Algorithms 

An Improved Round Robin Scheduling Algorithm for 

CPU Scheduling [1]. We have combined the features of 

SRTF and Round Robin. The improved Round Robin will 

never lead to starvation and will have lesser average 

waiting time. 
 

 

 

 

 

 
 

Fig.(IRR=RR+SRTF) 

 

Following is the proposed IRR(Improved Round Robin) 

CPU scheduling algorithm: 
 

1. Make a ready queue RQUEUE of the Processes 

submitted for execution in order of their arrival time. 
 

2 Execute the first process from the queue for the quantum 

or CPU brust time, whichever is lesser.  
 

3. DO steps 4 to 6 WHILE queue RQUEUE becomes 

empty. 
 

4. Arrange the processes in the ready queue REQUEST in 

the ascending order of their remaining burst time. 
 

Round 

Robin 
Proposed 

Algorithm 

SRTF 



                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 7, July 2015 
 

Copyright to IJARCCE                                          DOI 10.17148/IJARCCE.2015.4762                                                         272 

 

5. Execute the first process from the queue for the 

quantum or CPU brust time, whichever is lesser. 
 

6. Remove the currently running process from the ready 

queue RQUEUE, if it has finished execution time and 

Go To step 4. 
 

7 END Algorithm. 

 

 
 

VI. ILLUSTRATION 

Suppose we have six processes as per the details given 

below: 
  

Sr 

no. 

Proc ID Arrival 

Time 

Brust 

Time 

1. A 0 10 

2. B 1 5 

3. C 2 7 

4. D 3 6 

5. E 4 8 

6. F 5 12 

 

1) In IRR ready queue with six processes A,B,C,D.E and 

F has been considered for illustration purpose. The 

processes are arranged in the ascending order of their 

arrival time in the ready queue which gives the sequence 

A,B,C,D,E and F. The time quantum value is set equal 

to 3. CPU is allocated to the process A at Clock 0 from 

the ready queue for a time quantum of 3 milliseconds 

(ms). After first quantum, the remaining burst time for A 

is 10-3=7.  

2) Now, Clock time is 3 there are four processes A,B,C,D 

in the ready queue and having remaining Brust time 

7,5,7,6 resp.The processes A,B,C and D are arranged in 

the ascending order of their remaining burst time in the 

ready queue which gives the sequence B,D,A and C 

having new brust time 5,6,7,7 resp. CPU is allocated to 

the processes B from the ready queue for a time 

quantum of 3ms. After second quantum, the remaining 

burst time for B is 5-3=2. 

3) Now, Clock time is 6 there are six processes A,B,C,D,E 

and F having remaining Brust time 7,2,7,6,8,12 resp.The 

processes A,B,C,D,E and F are arranged in the 

ascending order of their remaining burst time in the 

ready queue which gives the sequence B,D,A,C,E,F 

having new brust time 2,6,7,7,8,12 resp. CPU is 

allocated to the processes B from the ready queue for a 

time quantum of 2ms which is less than allocated 

quantum.After quantum, the remaining burst time for B 

is 0. The process B has finished execution, so it is 

removed from the ready queue. 

4) Now, Clock time is 8 there are five processes A,C,D,E 

and F having remaining Brust time 7,7,6,8,12 resp.The 

processes A,B,C,D,E and F are arranged in the 

ascending order of their remaining burst time in the 

ready queue which gives the sequence D,A,C,E,F 

having new brust time 6,7,7,8,12 resp.Again it repeats 

the same procedure until Ready queue is not empty. 

5) The average waiting time is 15.33 ms in IRR. while 

average waiting time is 26.33 in RR. 

6) Average waiting time of all scheduligs with the same set 

of processes and the values are given below: 
 

 

Algorithm 

 

Avg. Waiting 

Time 

 

Avg. Turn 

around Time 

 

FCFS 

 

16 

 

24 

 

SJF 

 

15.83 

 

23.83 

 

Priority(np) 

 

18.16 

 

26.16 

 

Priority(preempt) 

 

17.66 

 

25.66 

 

SRTF 

 

14.16 

 

22.16 

 

RR 

 

26.33 

 

34.33 

 

IRR 

 

15.33 

 

23.33 

       

 
        

VII. CONCLUSION 

From the above comparisons it is clear that average 

waiting time of IRR is lesser than all the algorithms except 

for SRTF.  

But SRTF may result in starvation so IRR is better than 

SRTF also as it’ll never result in deadlock. 



                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 7, July 2015 
 

Copyright to IJARCCE                                          DOI 10.17148/IJARCCE.2015.4762                                                         273 

 

REFERENCES 
[1] A. Silberschatz, P. B. Galvin & G. Gagne, [John Wiley and Sons] 

”Operating System Concepts,” [7th edition 2005] Inc,157-167. 
[2] Rakesh Kumar Yadav, Abhishek K Mishra, Navin Prakash & 

Himanshu Sharma, An Improved Round Robin Schedduling 

Algorithm for CPU Scheduling International Journal on Computer 
Science and Engineering, Vol. 2, No. 4, 2010,1064-1066. 

[3] http://www.tc.faa.gov/its/worldpac/techrpt/ar05-27.pdf 

[4] Sunita Mohan, Mixed Scheduling, A New Scheduling 
Policy,Proceedings of Insight’09, 25-26 November 2009.  

[5] Silberschatz ,Galvin and Gagne, Operating systems concepts, (8th 

edition, Wiley, 2009). 
[6] Lingyun Yang, Jennifer M. Schopf and Ian Foster, Conservative 

Scheduling: Using predictive variance to improve scheduling 

decisions in Dynamic Environments”, Super Computing 2003, 
USA, Phoenix, AZ, November, 15-21, 

[7] Weiming Tong, Jing Zhao, Quantum Varying Deficit Round Robin 

Scheduling over Priority Queues, international Conference on 
Computational Intelligence and Security.(China, 2007) 252- 256. 

[8] Abbas Noon1, Ali Kalakech2, Seifedine Kadry1, A New Round 
Robin Based Scheduling Algorithm for Operating Systems: 

Dynamic Quantum Using the Mean Average, IJCSI International 

Journal of Computer ScienceIssues, Vol. 8, Issue 3, No. 1, May 
2011. 

[9] Saroj Hiranwal and K. C. Roy, Adaptive Round Robin Scheduling 

Using Shortest Burst ApproachBased On Smart Time Slice, 
International Journal of Computer Science and Communication 

Vol. 2, No. 2, July-December 2011,319-323 

[10] Rami J., Matarneh,Self-Adjustment Time Quantum in Round Robin 
Algorithm Depending on Burst Time of Now Running Processes”, 

American J. of Applied Sciences, Vol. 6, No. 10 (2009) 1831-1837. 

[11] M Lavanya & S. Saravanan, Robust Quantum Based Low-power 
Switching Technique to improve System Performance, 

International Journal of Engineering and Technology, Vol. 5, No. 

4, 2013,3634-3638. 
 


